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Abstract 

 

Finding Motifs in DNA is an important computational problem. It allows the discovery of 

patterns in biological sequences in order to better understand the structure and function of the 

molecules the sequences represent. Motifs can differ slightly from one gene to the next. 

When a sequence motif appears in the exon of a gene, it may encode the "structural motif" of 

a protein; that is a stereotypical element of the overall structure of the protein. Nevertheless, 

motifs need not be associated with a distinctive structure. If we find the motifs, we can easily 

differ from one gene to another from parents to its ancestors. Recent advances in genome 

sequence availability and in high-throughput gene expression analysis technologies have 

allowed for the development of computational methods for motif finding. We try to 

implement some algorithms and measure their performance.   
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Chapter 1 

 

Introduction 

Biological sequence motifs are short sequence of patterns. A lot of features of DNA, RNA 

and protein molecule can be well approximated by motif. Often they indicate sequence-

specific binding sites for proteins such as nucleases and transcription factors (TF). Motifs can 

be used to determine evolutionary and functional relationships. 

Discovery of motifs is an important because it allows the discovery of patterns in biological 

sequences for better understanding about the structure and the function of the molecules the 

sequences represent. DNA motifs are often associated with structural motifs found in 

proteins. Motifs can occur on both strands of DNA. Transcription factors indeed bind directly 

on the double stranded DNA. Sequences could have zero, one, or multiple copies of a motif. 

In addition to the common forms of DNA motifs two special types of DNA motifs are 

recognized: palindromic motifs and spaced dyad (gapped) motifs. A palindromic motif is a 

subsequence that is exactly the same as its own reverse complement. A spaced dyad motif 

consists of two smaller conserved sites separated by a spacer (gap). 

Over the past few years, many motif discovery tools have been designed and make available 

to public. They differ each other mostly in their definition of what constitutes a motif, what 

constitutes statistical overrepresentation of a motif and what method has been used to find 

statistically overrepresented motifs.  

A large number of algorithms for finding DNA motifs have been developed. Existing 

algorithms run in time linear with respect to the input size. Nevertheless, the output size can 

be very large due to the approximation. This often makes the output unreadable. Sometimes 

these algorithms detect overrepresented motifs and conserved motifs that might be good 

candidates for being transcription factor binding sites. Algorithms that detect overrepresented 

motifs perform not as well in higher organisms. To overcome this, some algorithms consider 

conserved motifs from orthologous species. Recent algorithms have also combined the two 

approaches to achieve improvement in motif finding. 
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Chapter 2 

Background Study 

Different motif finding algorithms are being described. Based on the type of DNA sequence 

information employed by the algorithm to deduce the motifs, Modan K Das  and Ho-Kwok 

Dai classify available motif finding algorithms into three major classes:  

(1) Those that use promoter sequences from coregulated genes from a single genome,  

(2) Those that use orthologous promoter sequences of a single gene from multiple species and 

(3) Those that use promoter sequences of coregulated genes as well as phylogenetic 

Footprinting. 

 

However, most of the earlier literature categorized motif finding algorithms into two major 

groups based on the combinatorial approach used in their design:  

(1) word-based methods and  

(2) Probabilistic sequence models. 

 

Word-based methods are mostly rely on exhaustive enumeration , counting and comparing 

oligonucleotide frequencies and the model parameters of probabilistic sequence models are 

estimated using maximum-likelihood principle or Bayesian inference The word-based 

enumerative methods guarantee global optimality and they are appropriate for short motifs 

and are therefore useful for motif finding in eukaryotic genomes where motifs are generally 

shorter than prokaryotes. The word-based methods can also be very fast when implemented 

with optimized data structures such as suffix trees and is a good choice for finding totally 

constrained motifs.  

However, for typical transcription factor motifs that often have several weakly constrained 

positions, word-based methods can be problematic and the result often needs to be post-

processed with some clustering system. Word-based methods also suffer from the problem of 

producing too many spurious motifs. The probabilistic approach involves representation of 

the motif model by a position weight matrix. Position weight matrices are often visualized as 

a pictogram in which each position is represented by a stack of letters whose height is 

proportional to the information content of that position. Probabilistic methods have the 

advantage of requiring few search parameters but rely on probabilistic models of the 

regulatory regions, which can be very sensitive with respect to small changes in the input 

data. 

 

Many of the algorithms developed from the probabilistic approach are designed to find longer 

or more general motifs than are required for transcription factor binding sites. Therefore, they 

are more appropriate for motif finding in prokaryotes, where the motifs are generally longer 

than eukaryotes. However, these algorithms are not guaranteed to find globally optimal 
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solutions, since they employ some form of local search, such as Gibbs sampling, expectation 

maximization (EM) or greedy algorithms that may converge to a locally optimal solution. 

A lot of scientists try to improve motif finding algorithm. Therefore, biologists and computer 

scientists have been very interested in identifying computational tools for motif finding. With 

the advent of availability of large scale genome sequencing and high-throughput gene 

expression analysis techniques, a large number of motif finding tools have been designed and 

implemented over the past decade. 

 

Liu et al. developed the algorithm FMGA based on genetic algorithms (GAs) for finding 

potential motifs in the of the transcription start site. The mutation in GA is performed by 

using position weight matrices to reserve the completely conserved positions. The crossover 

is implemented with specially designed gap penalties to produce the optimal child pattern. 

This algorithm also uses a rearrangement method based on position weight matrices to avoid 

the presence of a very stable local minimum, which may make it quite difficult for the other 

operators to generate the optimal pattern. The authors reported that FMGA performs better in 

comparison to MEME and Gibbs sampler algorithms. 

Thijs et al. developed the motif finding algorithm MotifSampler using a modification of the 

original Gibbs sampling algorithm. The two major modifications are  

(1) the use of a probability distribution to estimate the number of copies of the motif in a 

sequence and  

(2) the incorporation of a higher-order Markov-chain background model. 
 
 
 

Shida developed the motif discovery algorithm GibbsST using the method of simulated 

tempering with Gibbs sampling. Gibbs sampling is one of the most promising pattern 

discovery methods in terms of its flexibility and wide range of application, however, it is 

known to be rather strongly affected by the local optima problem. Therefore, the Gibbs 

sampling method can be further improved by a search method in the solution space. In pattern 

discovery and bioinformatics in general, the simulated annealing method is mostly used for 

improvement of search methods in the solution space. However, satisfactory improvements 

were not obtained using this method. Simulated tempering is one of many proposals from the 

field of thermodynamics for the systematic avoidance of local optima in multivariate 

optimization problems and is quite useful for reducing the vulnerability of Gibbs sampling to 

local optima.  

 

Kingsford et al. used a mathematical programming approach for DNA motif discovery that 

involved finding subsequences of a given length such that the sum of their pairwise distances 

was minimized. They used integer linear programming (ILP) that utilizes the discrete nature 

of the distance metric imposed on pairs of subsequences. Since finding a solution to the ILP 

is computationally difficult, the authors tightened the linear programming relaxation by 

adding an exponential set of constraints and used an efficient separation algorithm that can 
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find violated constraints and thus having a polynomial time solution. The authors tested the 

effectiveness of their approach in identifying DNA motifs in E. coli and demonstrated that 

the performance of their method is competitive with some Gibbs sampling-based algorithms 

for motif finding. 

 

There are other algorithms, for example, that combine the word-based methods and 

probabilistic approaches, like the MDScan algorithm. The TAMO algorithm runs multiple 

motif discovery algorithms (MEME, AlignACE and MDscan) and combines the results [20]. 

Other approaches are based on other machine learning techniques, neural networks, and 

clustering algorithms. Algorithms based on phylogenetic foot-printing has the advantage of 

the co-regulated gene approach is that co-regulated methods require a way for identifying co-

regulated genes; phylogenetic foot-printing approach is possible to identify motifs specific to 

even a single gene as long as they are sufficiently conserved across the many orthologous 

sequence considered. There are also algorithms that are based on promoter sequences of co-

regulated genes and phylogenetic foot-printing. These algorithms are often packaged into 

user-friendly interfaces, either on web servers or toolboxes. For example, the user-friendly 

interface, Toolbox of Motif Discovery (Tmod), integrates 12 widely used motif discovery 

programs: MDscan, BioProspector, AlignACE, Gibbs Motif Sampler, MEME, 

CONSENSUS,  MotifRegressor, GLAM, MotifSampler, SeSiMCMC, Weeder and YMF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

10 
 

Chapter 3 

Methodology 

For discovery of motifs, we have studied some algorithms and implemented them.  

3.1 Position weight matrix 

Position weight matrix (PWM) is a probabilistic algorithm. It is not only one of the most 

widely used bioinformatics methods, but also a key component in more advanced 

computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in 

nucleotide or amino acid sequences. However, few generally applicable statistical tests are 

available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of 

putative motifs. Statistical significance tests of the PWM output, that is, site-specific 

frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected 

in a single paper, with the consequence that many implementations of PWM do not include 

any significance test.  

The multiple comparison problem associated with the test of site-specific frequencies is best 

handled by false discovery rate methods. The test of PWM, due to the use of pseudo counts, 

is best done by resampling methods. The test of individual PWMS for each sequence segment 

should be based on the extreme value distribution. 

We have sequence set 

For example, given the following DNA sequences: 

GGTGTGGGGA 
CAGGGGTGTG 
GGGACAGGGG 
TCTGGGGACA 
GGGGTGTGGG 
GACAGGGGTC 
CTGGGGACAG 
GGGTGTGGGG 
ATAGGGGTGT 
GGGGACAGGG 

 

The corresponding PFM is: 
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Therefore the resulting PPM is: 

                           

The probability of the sequence S = GGTGTGGGGA given the above PPM M can be 

calculated: 

p(S | M ) = 0.3 x 0.5 x 0.2 x 0.7 x 0.2 x 0.7 x 0.6 x 0.7 x 0.6 x 0.2 = 0.0002964 

 

From this way we can find the motif. When the PWM elements are calculated using log 

likelihoods, the score of a sequence can be calculated by adding rather than multiplying the 

relevant values at each position in the PWM. The sequence score gives an indication of how 

different the sequence is from a random sequence. The score is 0 if the sequence has the same 

probability of being a functional site and of being a random site. The score is greater than 0 if 

it is more likely to be a functional site than a random site, and less than 0 if it is more likely 

to be a random site than a functional site. The sequence score can also be interpreted in a 

physical framework as the binding energy for that sequence.  

This work is done for 100 length sequence. PWM works well for small dataset. But if the 

dataset is larger, then the complexity becomes higher.  

 

3.2 Suffix Tree 

It’s a word based algorithm. A suffix tree is a data structure that exposes the interval structure 

of a string in a very deep meaningful way. A suffix tree τ for a string x = x1, . . . , xn is a 

rooted directed tree with exactly n leaves numbered from 1 to n. 

Suffix tree is another way to find sequence motifs in DNA.  

 

 

 

 

 

 

 



 

 

12 
 

3.2.1 Algorithm of Suffix tree 

Algorithm 1: constructing the pseudo suffix tree algorithm.  

 

 

Algorithm 2: Potential motif searching algorithm. 

 

   Algorithm 3: The checking pattern algorithm. 
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3.2.2 Scoring and motif selection 

Assume the set M = {U1, U2,....., Um} includes all motif instance. The scoring schema for 

scoring these motif instance sets are based on information content (IC), this means that each 

motif instance set is scored separately with regard to the background (sequence set S). Thus, 

for the motif instance set Ui = {ui,1,..., ui,q}, the corresponding position frequency matrix Wi 

is constructed. Later the IC value corresponding to Wi is computed as follows: 

                               

 

where Wi[α, j] is equal to the occurrence probability of character α ∈ {A, C, G, T} in j-th 

position of the motif instance set Ui, and ω[α] is the occurrence probability of character 

α in the set S. All the obtained motif instance sets are sorted based on this score. Finally the 

top 10 

consensus motifs between the obtained motif instance sets are investigated for reporting 

as motifs. 

 

3.2.3 Limitations 

If we do more than a single comparison in an iteration then max (l, r) grows by 1 for each 

comparison on O(log n + m) time. For large sequence and if we want to find more than 1 

motifs then the complexity is too high.  

 

3.3 Sequence alignment 

Sequential alignment means the way of arranging the sequence of DNA, RNA or proteins to 

identify the regions of similarity.  

 

Figure 1: Sequential Alignment 

 

If two sequences in an alignment share a common ancestor, we can interpret mismatches as 

point mutations and gaps as introduced in one or both lineages in the time since they diverged 
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from one another. In sequence alignments of proteins, the degree of similarity between amino 

acids occupying a particular position in the sequence can be interpreted as a rough measure of 

how conserved a particular region or sequence motif is among lineages. DNA and RNA 

nucleotide bases are more similar to each other than are amino acids; the conservation of base 

pairs can indicate a similar functional or structural role. 

The main problem of sequential alignment is its complexity. It takes more time to discover 

motifs in a large sequence. The complexity of sequential alignment is almost same as general 

word based algorithm.   

 

3.4 Genetic Algorithm 

Genetic algorithm is a machine learning approach. Genetic algorithms use Evolutionary 

techniques to find good approximate solutions. They use survival of the fittest techniques and 

have self-repair, self-guidance, and reproduction methods. They are highly randomized and 

are ideal for search and optimization problems. 

There are four major steps in genetic algorithm. The first challenge is to determine how the 

initial population will be created. Each individual in the population is a possible solution to 

the problem and should be generated randomly. The biggest challenge in a genetic algorithm 

is to determine a good fitness function. The fitness function measures the “goodness” of a 

solution versus other solutions. There is a reproduction phase which is based on both the 

fitness value and chance. There is a crossover phase where two parents individuals are 

Chosen and two new children individuals are created by mixing the traits of the two parent 

individuals. There is a mutation phase where one parent individual is selected and a mutation 

is done. A Mutation on an Individual occurs at a very low rate.  

The last step in the genetic algorithm is to determine when to terminate. This is typically 

done in one of two ways. The user can either specify the maximum number of rounds that the 

genetic algorithm should run, or they can specify a maximum number of rounds to run where 

the highest fitness value hasn't changed. These are the basics of genetic algorithms. A flow-

chart for genetic algorithms is shown below. 

 

 

 

Figure 2: Flow-Chart of a Genetic Algorithm 
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In every generation, a new set of artificial individuals is created using bits and pieces from 

the fittest individuals of the population and an occasional new part that is tried for good 

measure. Although genetic algorithms are randomized, they efficiently exploit historical 

information to speculate on new search points with expected improved performance. 

 

3.4.1 Steps 
 

Initial Population: 
Genetic algorithms require that there is a mapping between the real world representation of a 

problem and a data structure which can be as simple as a string. The string can be just a 

sequence of 1s and 0s where parts of the string represent pieces of the real world. In the 

genetic algorithms that will be introduced in this thesis, the individuals will be alignments of 

DNA sequences, sets of gene predictions for a DNA sequence, and pairs of alleles making up 

a trait. 

 

Reproduction: 

Reproduction is the first process in a genetic algorithm where the individual strings in the 

population are evaluated according to their optimality which is determined by an objective 

function. Biologists call this the fitness function. The fitness function is just a way to measure 

the profit, utility, or goodness that is trying to be maximized. Selecting strings according to 

their fitness values means that strings with a higher fitness value have a higher probability of 

contributing one or more offspring to the next generation. This correlates to natural selection 

- survival of the fittest. 

 

Crossover: 

From the new population, pairs of strings are randomly chosen for crossover. Crossover is 

just a swapping of parts of the strings. A random crossover point is generated, and two new 

strings are generated by combining the first part of Individual 1 up to the crossover point with 

the last part of Individual 2 after the crossover point. The other new string will have the first 

part of Individual 2 up to the crossover point and the last part of Individual 1 after the 

crossover point. 

 

Mutation: 
Mutation is the last step in the process. The chance that mutation occurs is very low. 
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Chapter 4 

Result Analysis 

 

 

Figure 3: 100 length test in general case. 

 

 

 

Figure 4: 100 lengths test in Sequential analysis. 

 

 

Figure 5: 100 lengths test in Suffix tree. 

 

 

Figure 6: 500 length test in general case. 

 

 

Figure 7: 500 lengths test in Sequential analysis. 

 

Figure 8: 500 lengths test in Suffix tree. 
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Chapter 5 

Proposals 

The mechanics of genetic algorithms are highly randomized, yet this is one of the main 

sources of their power. At first it seems surprising that chance should play such a 

fundamental role, but if some "idea" could be represented as a string, where substrings 

represent certain "notions" about the idea, then it can be clearly seen that the populations are 

not just stringent solutions to a problem, but rather "ideas" containing some helpful "notions" 

and some less helpful "notions" with the goal being to find the optimal "idea".  

Genetic algorithms keep combining the helpful "notions" from one "idea" with other helpful 

"notions" from other "ideas" until an optimal "idea" is found. 
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Chapter 6 

Conclusion 

As transcription factors bind to DNA motifs and gene expression, identification of motifs in promoter 

region of genes will help understand the regulation of gene expression. So biologists and computer 

scientists are interested to construct computational methods for motif finding. With the advent of 

availability of large scale of genome sequencing and high throughput gene expression analysis 

techniques, many algorithms have been designed and implemented past decade. Each has its 

advantage and disadvantage. Diverse approach including combinatorial enumeration, probabilistic 

modeling, mathematical programing, neural networks and genetic algorithms, have been used. Very 

beginning algorithms relied on co-expressed gene and searched for overrepresented motifs.  

Now-a-days latest algorithms are designed based on the overrepresentation and conservation 

among orthogonal sequences. From these algorithms of motif finding, user should be careful to 

choose the best one though the assessment   of   performance of algorithms is a difficult task. For 

this reason we do not have clear understanding of the biology of regulatory mechanisms, therefore, 

we lack an absolute standard against which correctness of algorithms can be measured. Each of the 

algorithms performs better in lower organism as Yeast with the comparison to the higher organisms. 

Recent algorithms that integrate the motif overrepresentation and cross-species conservation have 

proven to perform better in higher including human.  So, experts should use a few complementary 

tools in combination rather relying on a single one. 
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